Refine Your Search

Topic

Author

Search Results

Event

Registration - WCX™ World Congress Experience

2024-04-28
Count on SAE International®—the global leader in technical learning for mobility professionals—to deliver emerging research, consumer metrics, regulatory standards and the latest innovations to advance mobility at the WCX World Congress event.
Event

Digital Summit - WCX™ World Congress Experience

2024-04-28
If you are not able to attend WCX 2022 in-person, you will have the opportunity to join a selected number of live technical and executive discussions online that will advance your skill set in propulsion, connectivity security and safety as well as the business of technology.

SAE EDGE™ Research Reports - Publications

2024-04-28
SAE EDGE Research Reports provide examinations significant topics facing mobility industry today including Connected Automated Vehicle Technologies Electrification Advanced Manufacturing
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

The Use of Interactive Web Based Program Applications for In-Depth Vehicle Noise Path Analysis

2017-06-05
2017-01-1868
The authors previously presented at SAE 2015, the use of acoustic diagnostic network algorithms (Acoustic DNA) for the measurement and analysis of noise paths in motor vehicles. To further the understanding of the huge amount of data created in this method, especially by the end user or customer, a secure web based application platform has been engineered. The current paper presents operating aspects of the web based approach, including cyber security, multi device accessibility and intuitive user interface together with an innovative optimization toolbox from which both noise sources and vehicle body systems can be modified to be target compliant.
Journal Article

Accelerated Secure Boot for Real-Time Embedded Safety Systems

2019-07-08
Abstract Secure boot is a fundamental security primitive for establishing trust in computer systems. For real-time safety applications, the time taken to perform the boot measurement conflicts with the need for near instant availability. To speed up the boot measurement while establishing an acceptable degree of trust, we propose a dual-phase secure boot algorithm that balances the strong requirement for data tamper detection with the strong requirement for real-time availability. A probabilistic boot measurement is executed in the first phase to allow the system to be quickly booted. This is followed by a full boot measurement to verify the first-phase results and generate the new sampled space for the next boot cycle. The dual-phase approach allows the system to be operational within a fraction of the time needed for a full boot measurement while producing a high detection probability of data tampering.
Technical Paper

Proposal of HILS-Based In-Vehicle Network Security Verification Environment

2018-04-03
2018-01-0013
We propose a security-testing framework to analyze attack feasibilities for automotive control software by integrating model-based development with model checking techniques. Many studies have pointed out the vulnerabilities in the Controller Area Network (CAN) protocol, which is widely used in in-vehicle network systems. However, many security attacks on automobiles did not explicitly consider the transmission timing of CAN packets to realize vulnerabilities. Additionally, in terms of security testing for automobiles, most existing studies have only focused on the generation of the testing packets to realize vulnerabilities, but they did not consider the timing of invoking a security testing. Therefore, we focus on the transmit timing of CAN packets to realize vulnerabilities. In our experiments, we have demonstrated the classification of feasible attacks at the early development phase by integrating the model checking techniques into a virtualized environment.
Standard

Electron Beam Powder Bed Fusion Process

2020-07-01
CURRENT
AMS7007
This specification establishes process controls for the repeatable production of aerospace parts by Electron Beam Powder Bed Fusion (EB-PBF). It is intended to be used for aerospace parts manufactured using additive manufacturing (AM) metal alloys, but usage is not limited to such applications.
Technical Paper

The Study of Secure CAN Communication for Automotive Applications

2017-03-28
2017-01-1658
Cyber security is becoming increasingly critical in the car industry. Not only the entry points to the external world in the car need to be protected against potential attack, but also the on-board communication in the car require to be protected against attackers who may try to send unauthorized CAN messages. However, the current CAN network was not designed with security in mind. As a result, the extra measures have to be taken to address the key security properties of the secure CAN communication, including data integrity, authenticity, confidentiality and freshness. While integrity and authenticity can be achieved by using a relatively straightforward algorithms such as CMAC (Cipher-based Message Authentication Code) and Confidentiality can be handled by a symmetric encryption algorithm like AES128 (128-bit Advanced Encryption Standard), it has been recognized to be more challenging to achieve the freshness of CAN message.
Technical Paper

Evaluation of Vehicle System Performance of an SAE J1939-91C Network Security Implementation

2023-04-11
2023-01-0041
CAN bus network proved to be efficient and dynamic for small compact cars as well as heavy-duty vehicles (HDV). However, HDVs are more susceptible to malicious attacks due to lack of security in their intra-vehicle communication protocols. SAE proposed a new standard named J1939-91C for CAN-FD networks which provides methods for establishing trust and securing mutual messages with optional encryption. J1939-91C ensures message authenticity, integrity, and confidentiality by implementing complex cryptographic operations including hash functions and random key generation. In this paper, the three main phases of J1939-91C, i.e., Network Formation, Rekeying, and Message Exchange, are simulated and tested on Electronic Control Units (ECUs) supporting CAN-FD network. Numerous test vectors were generated and validated to support SAE J1939-91C. The mentioned vectors were produced by simulating different encryption and hashing algorithms with variable message and key lengths.
Journal Article

A Comprehensive Risk Management Approach to Information Security in Intelligent Transport Systems

2021-05-05
Abstract Connected vehicles and intelligent transportation systems are currently evolving into highly interconnected digital environments. Due to the interconnectivity of different systems and complex communication flows, a joint risk analysis for combining safety and security from a system perspective does not yet exist. We introduce a novel method for joint risk assessment in the automotive sector as a combination of the Diamond Model, Failure Mode and Effects Analysis (FMEA), and Factor Analysis of Information Risk (FAIR). These methods have been sequentially composed, which results in a comprehensive risk management approach to information security in an intelligent transport system (ITS). The Diamond Model serves to identify and structurally describe threats and scenarios, the widely accepted FMEA provides threat analysis by identifying possible error combinations, and FAIR provides a quantitative estimation of probabilities for the frequency and magnitude of risk events.
Standard

Laser Powder Bed Fusion Process

2022-08-05
CURRENT
AMS7003A
This specification establishes process controls for the repeatable production of aerospace parts by Laser Powder Bed Fusion (L-PBF). It is intended to be used for aerospace parts manufactured using Additive Manufacturing (AM) metal alloys, but usage is not limited to such applications.
Standard

Hardware Protected Security for Ground Vehicles

2020-02-10
CURRENT
J3101_202002
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive.
Journal Article

A Comprehensive Attack and Defense Model for the Automotive Domain

2019-01-17
Abstract In the automotive domain, the overall complexity of technical components has increased enormously. Formerly isolated, purely mechanical cars are now a multitude of cyber-physical systems that are continuously interacting with other IT systems, for example, with the smartphone of their driver or the backend servers of the car manufacturer. This has huge security implications as demonstrated by several recent research papers that document attacks endangering the safety of the car. However, there is, to the best of our knowledge, no holistic overview or structured description of the complex automotive domain. Without such a big picture, distinct security research remains isolated and is lacking interconnections between the different subsystems. Hence, it is difficult to draw conclusions about the overall security of a car or to identify aspects that have not been sufficiently covered by security analyses.
X